isomorphic places - определение. Что такое isomorphic places
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое isomorphic places - определение

Computably isomorphic

At the Crossing Places         
BOOK BY KEVIN CROSSLEY-HOLLAND
Draft:At the Crossing Places; At the Crossing-Places
At the Crossing Places is the second book in the Arthur trilogy by Kevin Crossley-Holland. It is a children's historical fantasy and an Arthurian legend, and recounts the story of the squire Arthur de Caldicot in the year 1200 after the events of The Seeing Stone.
Faraway Places         
US MUSICAL GROUP
The Faraway Places
The Faraway Places is an American indie rock band. Originally formed in Boston, Massachusetts, United States, as the Solar Saturday, they changed their name after moving to Los Angeles, California.
List of mythological places         
WIKIMEDIA LIST ARTICLE
Mythical city; Mythical place; Mythological place; Mythical continents; Mythological places; Mythological cities; List of mythical places; List of legendary places; List of mythological locations; Tolopampa
This is a list of mythological places which appear in mythological tales, folklore, and varying religious texts.

Википедия

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.